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Abstract. The critical dynamics of the kinetic Potts model on Koch curves and regular 
fractals is studied by means of the exact time-dependent renormalization-group method. 
Different critical dynamics are found on these two families of fractals. It is shown that the 
value of the dynamic critical exponent z depends on both the Potts dimensionality 9 and 
the transition rates asymmetry coefficient a. For Koch curves the scaling law of the dynamics 
exponent z = D, +f(9, .)/U, while for regular fractals z =  D, +Zf(q, a ) / v ,  where f ( 9 ,  a )  
characterizes the dependence of the dynamics exponent z on Potts dimensionality 9 and 
the transition rates asymmetry coefficient a, and Y is the static exponent of the correlation 
length. 

1. Introduction 

An understanding of the critical dynamics of the Potts model is of great importance 
in studies of various dynamical phenomena such as the Snoek effect [ l ] ,  liquid-glass 
transition [2] and  Potts glass theory [3]. Compared to the large body of knowledge 
that deals with the static critical phenomena of the q-state Potts model (see, e.g., [4, 5]), 
our  understanding of the dynamics near the critical point of the Potts model is rather 
limited. In the light of the achievements of the renormalization-group ( R G )  method in 
understanding both static critical phenomena (see, e.g., [6]) and critical dynamics of 
the kinetic Ising model [7-91, there has been much interest in extending the RG method 
to the critical dynamics of the Potts model. Maybe the first application of the RG 

method to the critical dynamics of the Potts model was suggested by Weir and Kosterlitz 
[lo]. They have used the time-dependent real space renormalization group (TDRG) 

approach introduced by Achiam [7] for dynamical problems of the q = 2 ”  one- 
dimensional ( I D )  Potts model. The dynamic critical exponent z was found to be 2, 
independent of q for their choice of the transition rates. Similar to the Ising model, 
the Potts model does not possess ‘intrinsic’ dynamics. Up to now, most TDRG studies 
of the critical dynamics have been limited to the simplest Glauber model [ l l ]  or 
generalized Glauber model. The crucial point in the Glauber analysis is the construction 
of the master equation and  the choice of the transition rates in the master equation. 
Those transition rates have to obey certain conditions, out of which the detailed balance 
is the most important one. In the Ising case any choice of the transition rates fulfilling 
the detailed balance leads to the same value of the dynamics exponent z ,  while for 
the q > 2 Potts model, various values of z have been obtained depending on the choice 
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of the transition rates [ lo ,  12, 131. Quite recently, Zaluska-Kotur and Turski [14] have 
extended the TDRG to study the critical dynamics of the I D  Potts model with a very 
broad class of transition rates. It is revealed that the dynamic critical exponent z may 
or may not depend on q for different choices of the transition rates. 

Until now, there has not been any study of the critical dynamics of the Potts model 
on a fractal. The critical-dynamics behaviour of spin models on fractals is interesting 
since the simple q = 2 Potts model (Ising model) has been shown to possess different 
critical-dynamics behaviours on different fractals [ 8,9, 151. For instance, the scaling 
law of the dynamic critical exponent z = D f +  1/ U is found on the Koch curves [9] 
whereas on regular fractals one has z = Df+ 2/ U. Here D, and v are the fractal 
dimension and the static correlation exponent, respectively. In this paper we study the 
critical dynamics of the Potts model with any q and a broad class of transition rates 
[14] on some finitely ramified fractals using the TDRG approach. We also expect that 
our studies would shed some light on the critical dynamics of random systems such 
as a diffusion-limited-aggregation ( DLA) cluster. 

The paper is organized as follows. In section 2 the kinetic Potts model is character- 
ized and the TDRG on the Potts model is briefly discussed. The Koch curves are 
discussed in section 3. The dynamics on the regular fractal for the DLA cluster are 
presented in section 4. Finally we conclude and discuss in section 5. 

2. Kinetic Potts model and formulation of the TDRG method 

The Potts system can be described by the Hamiltonian 

/ 3 H = - K  1 U p ,  (1) 
(1.1) 

where the Potts spins U, are placed at every junction of the fractal and assume the 
value aa = -4/2, -q/2+ 1 , .  . . , -1,1, .  . . , q / 2  and a, = - ( q  - 1)/2, -(q - 1) /2+ 1 , .  . . , 
-1, 0, 1 , .  . . , ( 4 -  1)/2 for even and odd q, respectively. The summation in (1) is 
restricted to nearest neighbours and a,uP = qSVeV, - 1 with SuoV, being the Kronecker 
delta function. The Glauber-like master equation governing this model dynamics is 

where P ( { a } ;  t )  and W(a ,  + el) are the probability distribution and the transition 
rates, respectively, and p ( a l  + 6,) is a spin-flip operator: 

p ( a l + 6 , ) ~ ( a , ,  ...,U,,..., ( + N ) = f ( ( T  I , . . . ,  GI , . . . )  cl,). 

[ l - ~ ( a , + 6 , ) 1 W ( a , + 6 : , ) P e ( { a j ) = O  

The transition rates W ( a ,  + 6,) should satisfy the detailed balance condition 

where Pe({ a } )  characterizes the equilibrium state 
,-PH 

(3) 

Pe=  
Tr[ e-PH 3 ' 

The detailed balance condition does not determine W, uniquely. Following Zaluska- 
Kotur and Turski [ 141, we take 

1 
Pe 

W ( a , + 6 , )  =- (Pep(a ,+6 , )P , ) "  (4) 
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where the real parameter a E [0, 11 is the spin-flip asymmetry coefficient [ 141. It contains 
additional information about the internal dynamical property of the Potts model. With 
(4), the master equation ( 2 )  can be rewritten as 

a 
- T O G  pedJ({V}; f )  = E  C peW(c,  + &,)[I -p(ai + 62)1d({a}; 1) (5) 

I ri, # (7, 

where &({a}; t )  = P ( { a } ;  t)/Pe measures the deviation from equilibrium. We limit 
ourselves to the study of the relaxation of an  infinitely small magnetic-like perturbation 
from equilibrium, thus 

where r distinguishes between points which may have different coordination number. 
According to Achiam [8], the TDRG method consists of two steps. The first step is 

a renormalization of the space by a factor bDf  using the decimation procedure. 
Multiplying (5) by T ( p ,  a), given by 

N 

T ( P ,  a) = rI 8 ( P ,  -a,) ( 7 )  

where rr, are the spins at the edges of the generators on Koch curves or at seed points 
on regular fractals, and  taking a trace over all spins, we obtain 

r = l  

where 

L , =  1 PeW(a,+&.,)[1-p(a,- t6 , )] .  
3, f mi 

The left-hand side of (8) is nothing other than the standard static RG transformation 
[ 6 ] ,  which transforms P ( { a } ;  t )  = P ( K ,  { h r } ;  t )  into P ’ ( K ’ ,  { h ; } ;  t ) ,  where K and {h,} 
are interaction and field parameters, respectively. In the parameter space ( K ,  h )  the 
RG transformation is described by the recursion relations 

K ’ =  R K  h’ = Ah. ( 9 )  
The RG transformation of the right-hand side of (8) transforms the Liouville operator 
L and the equilibrium probability distribution Pe to L’ and P: and results in a 
transformation in the invariant subspace: 

hd=flh.  (10) 
Then as the second stage, by representing hd in terms of h’ and rescaling the time by 
a factor b‘, T & =  b ’ ~ ~ ,  equation (8) restores the form of equation ( 2 ) .  The dynamic 
critical exponent z can be obtained by 

w / A  = b-’ (11) 
where w and A are the largest eigenvalues of R and .I, respectively. 

3. Koch curves 

3.1. Non-branching Koch curves 
The non-branching Koch curves [16] ( N B K C )  such as in  figure 1 are homogeneous 
curves with a finite ramification number r 2 .  As far as the magnetic properties are 
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Figure 1. The generator of a simple example of non- 
branching Koch curves with 6 = 5 ,  I = 8, and D, = 

/& 0 1  0 3  u4 0 7  p1 I n 8 / l n 5  

concerned, they are linear I D  chains. The dynamic exponent is obtainable from the 
Glauber solution. Here we use the TDRG approach to illustrate the formulation of the 
TDRG method on the q-state Potts model. 

There are two terms C,,,T(p,  u ) P ,  and C{ , lT (p ,  u ) P e h  C, ul on the left-hand side 
of (8). Under the RG, we transform the nth stage to the (n - 1)th stage by tracing over 
the ( I  - 1)  internal spins of the generator. The transfer matrix 

t ( K )  = e x p ( K ~ , u , + , )  (12) 

At ' (K ' )  = [ r ( K ) ] ' .  (13) 

is transformed to t ' ( K ' )  = exp(K'p,p,+I) by the following relations: 

Therefore for the first term on the left-hand side of (8) we obtain 

1 T ( P ,  u)pe=II A exP(K'pipjuj). 
{Cl i 

The recursion relation of the RG transformation can be obtained from (13) 

( a + q b ) '  a' 

4 9 9 9 
-- ( a  +qb)'  q - 1 

A(x')q-' = +- a' A(x ' ) - '  = 

where a = xq- I  - x - ' ,  b = x - '  with x = e K  and  x' = e K'. Note that when q = 2 we produce 
the familiar relation tanh K ' =  (tanh K ) '  and  A = 2'-'(cosh K)' /cosh K ' .  The recursion 
relation (15) has stable fixed point x* = 1 and unstable fixed point x* = W .  

For the second term on the left-hand side of (8), the renormalized field near the 
unstable fixed point x* = CO is 

h'= lh = bDlh. (16) 

This relation can be obtained by just counting how many spins contribute to h, as 
shown below. 

Under the RG, we transform the nth stage fractal to ( n  - 1)th stage by tracing over 
1 - 1 internal spins, as shown in figure 1 by uI, . . . , U/-, ; for 1 = 8, therefore, we have 

1-1 

{ U \  l i - I  
C T ( p , ~ ) P e h  1 

where C;= l ! / [ ( / - i ) ! i ! ] .  In the last step we have made use of the recursion relation 
(15) and the fact that near the critical point we have x + ~3 and thus retained only the 
most dominant terms in the summation. 
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With the use of ( 1 7 ) ,  the recursion relation for the field parameter (16) can be 

Now we turn to the right-hand side of (8), which is the sum of the term h ( u ,  - 
easily obtained. 

6 , ) P ,  W ( u ,  + 6,). Due to the choice of W ( u ,  + 6,) of (4),  it is easy to show that 

1 (U,  - 6,) hP, W (  U, + 6,) = 0. 
V ,  6, # V ,  

Thus after the trace is performed, only the term 

c (CL,-I*.c)hPeW(PL,+CZ,) 
i , # w t  

survives. Let us concentrate our attention on the generator from po to p ,  as shown in 
figure 1. Paying attention to our choice of W ( p , +  &), we note that if we have 

c e x p [ K ( a , u , + .  . .+fl ,&IP,)l  e x P [ a K ( P , ~ , + I * . , ~ , ) l  
TI VI-I 

= A D  eXP[aK’(pOCLI + I*.opI)I (18) 
it is not difficult to derive 

C T(P,  s)(p,-I*.O)hPeW(CLo+I*.o)= C 02(CL,-I*.o)hP:W’(CLO+I;O) (19) 
& # P o  G o t w o  

where the index 2 of D comes from the coordination number r = 2. The formula (19) 
implies 

hd = D2 h. (20) 
In the matrix form, (18) can be rewritten as 

AD? = ( t ) ’ - ’  

where 
* 
t , l ‘ , z = e x p [ a K ( ( + I ~ 2 + ( + , 6 . 2 ) l .  

For q = 2, with 

(21) gives directly D = c o s h  K‘lcosh K.  For general q > 2 ,  it is in fact impossible to 
satisfy (21) for each matrix element with a single factor D. Fortunately, paying attention 
to the fact that the system has the unstable fixed point x*  = cn, which corresponds to 
the zero critical temperature, and  taking into account the summation over I*.* in (19), 
near the critical point, one can calculate the factor D by just making comparison 
between the most dominant terms in both sides of (21),  as has been done in [14]. This 
approach is believed to be tenable only for the system which has a zero critical 
temperature. So for q not smaller than 2 and near the critical point, we have 

(23) 
A D ( x ! ) Q l y - ? l  - - x l i - l l l y -  l l x < ? l q - 2 1  

which yields 

(24) 
D = / - ! l Y , O  1 2 

with 
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By b-' = W ~ , , / A , , , ~ ~ ,  we obtain the dynamic critical exponent 

f ( 4  C Y )  z = Dj +- 
V 

where v = In b/ln 1 is the static exponent of the correlation length. Thus we have found 
that the dynamics exponent z depends on both the Potts dimensionality and the 
transition rates asymmetry coefficient CY.  For the Ising case, with q = 2 ,  we have 
z = D,+ 1/ v, which reproduces the result of [9]. 

3.2. ModiJied non-branching Koch curves 

Now we turn to the discussion of the modified N B K C  [9,16]. The idea was to decorate 
a NBKC with non-iterative bonds and thus to have a fractal with a less trivial relationship 
to the I D  problem. An example of such a curve is shown in figure 2. As in [9], we 
assume that the two branching points a,, and on the two sides of the non-iterative 
bond K O  are linked by a chain of 1 iterative bonds and there are 2m spins in the two 
external sides of a,, and U b i .  Similarly to NBKC, we have the following recursion 
relation: 

Alt l  = t '  At'= t"'AItctm (27) 

(28) 

which yields 

A,xy-l = ( a +  q b ) ' / q + ( q  - l ) a ' / q  A , x ; '  = ( U  + q b ) ' / q  - a ' / q  

A ( x ' ) ~ - ' / A ,  = ( a  + qb)'"(ac+ q b , ) / q  + ( q  - l )a ' "ac /q  

A( x ' ) - ' /  A,  = ( a  + q b ) 2 m  (a ,  + qb,)/  q - uzmac/ q 

where 

a, = $ 1  - x,' 6,  = x i '  (30) 

with x ,  = x , x o ,  The recursion relations have a non-trivial fixed point x* = M only if 
x 0 = m .  The fixed point has a critical exponent v-' =ln(2m)/ln b. In a way similar to 
that in the case of NBKC, by a tedious matrix manipulation and retaining only the most 
dominant terms, near the fixed point one has 

IrO .-A-. 0 0 1  Ob1 P1 A - - -  

(4 ( b )  
Figure 2. The  first two stages of modified non-branching Koch curves with / = 2 and  m = 1. 
The solid lines represent iterative bond K a n d  broken lines non-iteratibe bonds K O .  



Critical dynamics of the kinetic Potts model 5847 

With (31)  it is easy to obtain 

h'= 1 + 2  -+m h = ( 2 m + l ) h = b D r h .  [ )I 
The RG transformation of the right-hand side of ( 8 )  can also be performed similarly 
to the case of N B K C .  We can directly write the recursion relation for matrix i as follows 

A D ? =  t m t , A I t m - ' i  (33) 

where the transfer matrices t and i are given in (12)  and (22 ) ,  respectively. Near the 
zero critical temperature, D can be calculated by comparing the most dominant terms 
on the two sides of (33), which gives the relation 

(34)  

D = ( 2 m ) - f " 4 . " ) i 2  (35)  

A D ( ~ ' ) R ( Y - ~ )  = X ( 4 - l l m  4 - I A  x ~ q - l ) ( m - l )  X a ( q - 2 )  xc 1 

The above formula, together with the recursion relations (28)  and (29)  provides 

Thus the dynamic critical z is 

3.3. Branching Koch curves 

For branching Koch curves ( B K C ) ,  the non-equilibrium Hamiltonian must be para- 
metrized using the interaction K and a set of fields h ,  where r is the coordination 
number. As examples, in figure 3 we show some generators of BKC. The field parameters 
for the B K C  in figure 3 ( a )  should be h ,  and h 3 ,  whereas in figure 3 ( b )  they are h2 and 
h,. The numbers m, n, r, I are defined in figure 3. The RG transformation of the 
equilibrium probability distribution P, can be given by the recursion relation for the 
transfer matrix. For B K C  as shown in figure 3 ( a ) ,  we have 

A ,  t ,  = ( t ) '  A2t2 = ( t ) '  At'= t"AIA2t,tm (37)  

or 

Figure 3. Two examples of the generators of branching Koch curves. The numbers of 
bonds in different parts of the generators are  denoted by the letters in the figure. 
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where a, and 6, are given by (30) with xC= xIx2.  The recursion relations for x , ,  x 2 ,  
A I ,  A2 are similar to ( 2 8 ) .  A direct but tedious matrix manipulation, similar to that 
in the case of the modified NBKC,  shows that the recursion relations for h2 and h3 near 
the unstable fixed point x* = a3 are simply 

h i  = [ m  - 1 + ( l -  l ) + ( r  - 1 ) +  m - 1 + l ] h 2 + 2 h ,  

h i  =; (2m + r +  l -4)h2+4h,  
(39)  

which yields the largest eigenvalue for the transformation matrix ,A 

h m , , = 2 m + r + l =  b D f .  (40) 

Note that in the recursion relation for h 3 ,  we must assume a symmetrical generator 
with m = n. If m f n, one has to either distinguish between the different h ,  according 
to the symmetry of the vertex or  average the contributions. The latter treatment may 
result in a n  approximation. 

The RG transformation of the right-hand side is straightforward by the renormaliz- 
ation relation for the transfer matrix ? 

DAi'= tmt,A,A2tm-l ( 4 1 )  

( 4 2 )  

Near the fixed point, D can be calculated from the relation 
DA(X')"(9-2) = X m ( q - l i  x, 9-1 ~ , ~ ~ ~ ( q - l ) ( m - I ) ~ ~ ( q - 2 )  

For q not smaller than 2 we have 

which implies 

h;  = D2h2 h i =  D3h3.  (44)  

The largest eigenvalue of the matrix fl is D 2 ,  thus one deduces 

with v = In b l l n ( 2 m )  being the static correlation exponent. Therefore, for Koch curves 
we have the same expression for the dynamics exponent z. The different critical- 
dynamics behaviours result from the static correlation exponent v. Indeed, of these 
three classes of fractals, the modified NBKC will relax the fastest, while the N B K C  is 
the slowest, as in the dynamical Ising case. 

4. Regular fractal 

In 1981, Witten and  Sander [ 171 proposed the diffusion-limited aggregation ( D L A )  

model by which many phenomena can be described. Later, Christon and  Stinchcombe 
[ 181 proposed a family of regular models. It is shown that these simple regular fractals 
retain some of the features of random branching DLA clusters and thus can serve as a 
good model for the DLA clusters. In this section we study the kinetic Potts model on 
these regular fractals. We may expect that the study of the critical dynamics on these 
regular fractals may give some insight into the critical dynamics of random DLA clusters. 
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t 

Figure 4. The simplest regular fractal model for DLA with the fractal dimension D, = 

In 5/ln 3 .  

Figure 5. The three typical structures of the simplest regular fractal model for D L A  shown 
in figure 4. 
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To begin, we focus our attention on a regular fractal as shown in figure 4. The 
fractal has three kinds of points with different coordination number, 4, therefore, is 
determined by three field parameters h ,  , h2 and h, corresponding points with coordina- 
tion number 1, 2 and 4, respectively. Although the fractal has three typical structures 
shown in figure 5. These three typical structures produce the same recursion relation 
for the interaction parameter K. Thus we need only one interaction parameter K and 
three field parameters h , ,  h2 and h, to span the invariant subspace. The three different 
basic structures with different numbers of dangling ends only produce different renor- 
malization coefficients and  thus affect the free energy of the system but not the critical 
behaviour. After decimation, which eliminates all points except the seed points, we 
obtain the recursion relations for the transfer matrix for the basic structures with zero, 
two and three dangling ends, respectively: 

Equation ( 4 6 )  implies 

A ( X ’ ) ~ - ’  = ( ~ + q b ) ~ / q + ( q -  l ) a 3 / q  

A ( x ’ ) - ’  = ( a  + b q ) 3 / q  - a 3 / q  
( 4 7 )  

and B = x 4 - ’  + ( q  - 1)x-I. Therefore, for the first term on the left-hand side of (8), we 
have 

c T ( p ,  a ) P e  = n A A  exp(K’pu,p,) 
{U) I 

with B, being 1, B2 or B3 depending on the number of the dangling ends at point i. 
The recursion relation ( 4 7 )  has a stable fixed point x* = 1 and unstable fixed point 
X* = Co. 

Before calculating the second term on the left-hand side of (8) 

we would like to derive some useful relations. For a basic structure with three dangling 
ends as shown in figure 5 ( a ) ,  it is not difficult to derive 

where 

Near the fixed point x* = m, we have C, = C, = 1. 

dangling ends, provides the renormalized fields at the critical point 
Equation (48), together with the similar relations for the basic structure with two 

(49) 
Thus the transformation matrix of the field parameters has the largest eigenvalue 
A,,, = 5 = bDI. 

hi = 3h,  + h2 + h4 hi  = 2 h ,  + 2h2 + h4 h& = 4h2 + h, . 
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Similar to section 3, under RG transformations we have the renormalized transfer 
matrix i 

ADo?= t’? 

The largest eigenvalue for the transformation matrix s1 is w,,, = D i ,  therefore the 
dynamic critical exponent is 

with v = 1 from the recursion relation (47). 
For a more complex regular model as shown in figure 6, noting that the dangling 

ends d o  not affect the recursion relation for the interaction parameter, we have, 
analogous to (46), the renormalization equation 

At’ = tb. (54) 

The above recursion relation has the non-trivial fixed point x*  = 00. Near the fixed 
point, by a tedious matrix manipulation and  retaining only the most dominant terms 
analogously to section 3, the following recursion relation for the field parameters can 
be deduced: 

with Ai,J 2 0 and  ZJAl,J = N. Here N = bDi is the number of points in the generator. 
According to Perrons-Frobenius theorem (see, e.g., [19,20]), the matrix ‘4 has the 
largest eigenvalue Amax = bDf .  In  order to calculate wmax,  we should pay attention to 
the fact that the seed points which survive after decimation have the coordination 
number r = 4 .  So we have 
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Figure 6. The generator of the generalized regular fractal model for DL.A with b = 13 and 
D, = I n  731111 13. 

The above formula suggests that h,  and h2 are highly irrelevant, associated with the 
zero eigenvalue. The largest eigenvalue is given by 6,. The renormalization relation 
for the matrix ? has the form 

D,A? = t b - I i  (57) 

At the critical point, equation (57) ,  together with equation (54), provides 

( 5 8 )  D - b-/(9.")/2 
4 -  

and thus 

wmax = d, = 0:. ( 5 9 )  

Finally, we have 

In comparison with KC, we note that the factor Dt in the dynamic critical exponent 
z results from the scaling of the most slowly relaxing perturbation, while f ( q ,  a ) /  v 
comes from the scaling of the Liouville operator. On KC, the largest eigenvalue wmdX 
corresponds to the scaling of the field parameter for a site with coordination number 
r = 2 (see section 3 and [9]), whereas on the regular fractal U,,, corresponds to the 
scaling of the field parameter for a point with r = 4. This results in the different factors, 
1 and 2, for KC and regular fractals, respectively, before f( q, a ) /  v in the expression 
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of z. We conjecture that on 3~ regular fractal models for DLA clusters, the dynamic 
exponent z should be 

(61) 
since the relevant field parameter corresponds to a site with r = 6. The calculation on 
some simple 3~ regular fractals does show the scaling law of the dynamic critical 
exponent (61). 

z = D, + 3 f ( q ,  a I /  v 

5. Conclusions and discussions 

By means of TDRG theory for the kinetic spin model, we have studied the critical 
dynamics for some finitely ramified fractals and obtained the dynamic critical 
exponents. For all these fractals, the dynamic exponent z can be written in terms of 
the static correlation exponent v. On the Koch curves, the scaling law of the dynamic 
exponent z = D,+f(q, a ) / v ,  with (U being the transition rate asymmetry coefficient, is 
found. On Z D  regular fractal models for DLA clusters we have z = D, +2f(q, a ) / v .  
Furthermore, we note that no matter how complex these four classes of fractals may 
be, the perturbation of ( 6 )  always contributes D, to the dynamic exponent z and the 
Liouville operator adds f(q,  a)/ v and 2 f ( q ,  a ) /  v to z for Koch curves and regular 
fractals, respectively. The different factors before f(q,  a ) / v  result from the fact that 
the relevant field parameter corresponds to sites with different coordination numbers 
on the two families of fractals. This leads us to conjecture that the 3~ regular fractals 
should have the dynamic exponent z = D, + 3 f (4, a ) /  Y. This conjecture is supported 
by the calculation for some simple 3~ regular fractals. Meanwhile, it is interesting to 
note that as in Ising model, the static exponent v = 1 on the regular fractals, independent 
of the choice of the regular models, which seems to support the fact that the regular 
fractals can characterize the essential features of the random DLA clusters. Therefore, 
the dynamic exponent z = D, + 2f( q, (U)/ v and z = D, + 3f( q, a ) /  Y are proposed for 
the kinetic Potts model on the Z D  and 3~ random DLA clusters, respectively. 

Finally, we should note that in the context of this paper, we limit ourselves to a 
discussion of the critical dynamics on regular fractals. We tend to believe that the 
conclusion that the dynamic critical exponent depends only on the static properties is 
not only a consequence of the regular fractals, it also holds for other finitely ramified 
fractals, which have the zero critical temperature. Further, although the critical Glauber 
dynamics on fractal geometries is commonly discussed using Achiam's TDRG scheme 
[8,9,151, it is interesting to ask whether the dynamic exponent still depends only on 
statics if we go beyond the approximation. To answer this question one may work 
directly with the equations of motion for the expectation value of the spins [21] 

(S,(t))= c a,P(Ia>; t )  
{ut 

instead of decimating at the level of the master equation. This has yet to be studied 
further. 
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